Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Annu Rev Immunol ; 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38211945

The immune system and the kidneys are closely related. Immune components mediate acute kidney disease and are crucial to the progression of chronic kidney disease. Beyond its pathogenic functions, the immune system supports immunological homeostasis in healthy kidneys. The kidneys help maintain immune equilibrium by removing metabolic waste products and toxins, thereby limiting local and systemic inflammation. In this review, we describe the close relationship between the immune system and the kidneys. We discuss how the imbalance in the immune response can be deleterious to the kidneys and how immunomodulation can be important in preventing end-stage renal disease. In addition, recent tools such as in silico platforms and kidney organoids can help unveil the relationship between immune cells and kidney homeostasis. Expected final online publication date for the Annual Review of Immunology, Volume 42 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Kidney Res Clin Pract ; 42(5): 561-578, 2023 Sep.
Article En | MEDLINE | ID: mdl-37448286

Kidneys are sensitive to disturbances in oxygen homeostasis. Hypoxia and activation of the hypoxia-inducible factor (HIF) pathway alter the expression of genes involved in the metabolism of renal and immune cells, interfering with their functioning. Whether the transcriptional activity of HIF protects the kidneys or participates in the pathogenesis of renal diseases is unclear. Several studies have indicated that HIF signaling promotes fibrosis in experimental models of kidney disease. Other reports showed a protective effect of HIF activation on kidney inflammation and injury. In addition to the direct effect of HIF on the kidneys, experimental evidence indicates that HIF-mediated metabolic shift activates inflammatory cells, supporting the HIF cascade as a link between lung or gut damage and worsening of renal disease. Although hypoxia and HIF activation are present in several scenarios of renal diseases, further investigations are needed to clarify whether interfering with the HIF pathway is beneficial in different pathological contexts.

3.
Am J Physiol Renal Physiol ; 325(3): F283-F298, 2023 09 01.
Article En | MEDLINE | ID: mdl-37439199

Tissue hypoxia has been pointed out as a major pathogenic factor in chronic kidney disease (CKD). However, epidemiological and experimental evidence inconsistent with this notion has been described. We have previously reported that chronic exposure to low ambient Po2 promoted no renal injury in normal rats and in rats with 5/6 renal ablation (Nx) unexpectedly attenuated renal injury. In the present study, we investigated whether chronic exposure to low ambient Po2 would also be renoprotective in two additional models of CKD: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. In both models, normobaric ambient hypoxia attenuated the development of renal injury and inflammation. In addition, renal hypoxia limited the activation of NF-κB and NOD-like receptor family pyrin domain containing 3 inflammasome cascades as well as oxidative stress and intrarenal infiltration by angiotensin II-positive cells. Renal activation of hypoxia-inducible factor (HIF)-2α, along with other adaptive mechanisms to hypoxia, may have contributed to these renoprotective effects. The present findings may contribute to unravel the pathogenesis of CKD and to the development of innovative strategies to arrest its progression.NEW & NOTEWORTHY Hypoxia is regarded as a major pathogenic factor in chronic kidney disease (CKD). In disagreement with this view, we show here that sustained exposure to low ambient Po2 lessened kidney injury and inflammation in two CKD models: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. Together with our previous findings in the remnant kidney, these observations indicate that local changes elicited by hypoxia may exert renoprotection in CKD, raising the prospect of novel therapeutic strategies for this disease.


Nitric Oxide , Renal Insufficiency, Chronic , Rats , Animals , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Immunity, Innate , Hypoxia/pathology , Inflammation/pathology , Adenine/pharmacology
4.
PLoS One ; 18(5): e0285418, 2023.
Article En | MEDLINE | ID: mdl-37159453

Fibrillin-1 is a pivotal structural component of the kidney's glomerulus and peritubular tissue. Mutations in the fibrillin-1 gene result in Marfan syndrome (MFS), an autosomal dominant disease of the connective tissue. Although the kidney is not considered a classically affected organ in MFS, several case reports describe glomerular disease in patients. Therefore, this study aimed to characterize the kidney in the mgΔlpn-mouse model of MFS. Affected animals presented a significant reduction of glomerulus, glomerulus-capillary, and urinary space, and a significant reduction of fibrillin-1 and fibronectin in the glomerulus. Transmission electron microscopy and 3D-ultrastructure analysis revealed decreased amounts of microfibrils which also appeared fragmented in the MFS mice. Increased collagen fibers types I and III, MMP-9, and α-actin were also observed in affected animals, suggesting a tissue-remodeling process in the kidney. Video microscopy analysis showed an increase of microvessel distribution coupled with reduction of blood-flow velocity, while ultrasound flow analysis revealed significantly lower blood flow in the kidney artery and vein of the MFS mice. The structural and hemodynamic changes of the kidney indicate the presence of kidney remodeling and vascular resistance in this MFS model. Both processes are associated with hypertension which is expected to worsen the cardiovascular phenotype in MFS.


Marfan Syndrome , Animals , Mice , Fibrillin-1/genetics , Marfan Syndrome/genetics , Disease Models, Animal , Kidney , Extracellular Matrix , Collagen Type I
6.
Front Physiol ; 12: 606392, 2021.
Article En | MEDLINE | ID: mdl-34305624

Subjects recovering from acute kidney injury (AKI) are at risk of developing chronic kidney disease (CKD). The mechanisms underlying this transition are unclear and may involve sustained activation of renal innate immunity, with resulting renal inflammation and fibrosis. We investigated whether the NF-κB system and/or the NLRP3 inflammasome pathway remain activated after the resolution of AKI induced by gentamicin (GT) treatment, thus favoring the development of CKD. Male Munich-Wistar rats received daily subcutaneous injections of GT, 80 mg/kg, for 9 days. Control rats received vehicle only (NC). Rats were studied at 1, 30, and 180 days after GT treatment was ceased. On Day 1, glomerular ischemia (ISCH), tubular necrosis, albuminuria, creatinine retention, and tubular dysfunction were noted, in association with prominent renal infiltration by macrophages and myofibroblasts, along with increased renal abundance of TLR4, IL-6, and IL1ß. Regression of functional and structural changes occurred on Day 30. However, the renal content of IL-1ß was still elevated at this time, while the local renin-angiotensin system remained activated, and interstitial fibrosis became evident. On Day 180, recurring albuminuria and mild glomerulosclerosis were seen, along with ISCH and unabated interstitial fibrosis, whereas macrophage infiltration was still evident. GT-induced AKI activates innate immunity and promotes renal inflammation. Persistence of these abnormalities provides a plausible explanation for the transition of AKI to CKD observed in a growing number of patients.

7.
Clin Exp Pharmacol Physiol ; 48(12): 1579-1588, 2021 12.
Article En | MEDLINE | ID: mdl-34314523

In recent decades, there has been a progressive increase in the prevalence of obesity and chronic kidney disease. Renal lipotoxicity has been associated with obesity. Although lipids play fundamental physiological roles, the accumulation of lipids in kidney cells may cause dysfunction and/or renal fibrosis. Adipose tissue that exceeds their lipid storage capacity begins to release triglycerides into the bloodstream that can get stored in several organs, including the kidneys. The mechanisms underlying renal lipotoxicity involve intracellular lipid accumulation and organelle dysfunction, which trigger oxidative stress and inflammation that consequently result in insulin resistance and albuminuria. However, the specific pathways involved in renal lipotoxicity have not yet been fully understood. We aimed to summarize the current knowledge on the mechanisms by which lipotoxicity affects the renal morphology and function in experimental models of obesity. The accumulation of fatty acids in tubular cells has been described as the main mechanism of lipotoxicity; however, lipids and their metabolism also affect the function and the survival of podocytes. In this review, we presented indication of mitochondrial, lysosomal and endoplasmic reticulum alterations involved in kidney damage caused by obesity. The kidney is vulnerable to lipotoxicity, and studies of the mechanisms underlying renal injury caused by obesity can help identify therapeutic targets to control renal dysfunction.


Kidney
8.
Kidney360 ; 2(9): 1501-1509, 2021 09 30.
Article En | MEDLINE | ID: mdl-35373097

Seminal works have now revealed the gut microbiota is connected with several diseases, including renal disorders. The balance between optimal and dysregulated host-microbiota interactions has completely changed our understanding of immunity and inflammation. Kidney injury is associated with accumulation of uremic toxins in the intestine, augmented intestinal permeability, and systemic inflammation. Intestinal bacteria can signal through innate receptors and induce immune cell activation in the lamina propria and release of inflammatory mediators into the bloodstream. But the gut microbiota can also modulate immune functions through soluble products as short-chain fatty acids (SCFAs). The three most common SCFAs are propionate, butyrate, and acetate, which can signal through specific G-protein coupled receptors (GPCRs), such as GPR43, GPR41, and GPR109a, expressed on the surface of epithelial, myeloid, endothelial, and immune cells, among others. The triggered signaling can change cell metabolism, immune cell activation, and cell death. In this study, we reviewed the gut-kidney axis, how kidney cells can sense SCFAs, and its implication in kidney diseases.


Fatty Acids, Volatile , Gastrointestinal Microbiome , Bacteria/metabolism , Kidney/metabolism , Receptors, G-Protein-Coupled
9.
Curr Opin Nephrol Hypertens ; 29(4): 423-431, 2020 07.
Article En | MEDLINE | ID: mdl-32452918

PURPOSE OF REVIEW: Uric acid is produced after purine nucleotide degradation, upon xanthine oxidase catalytic action. In the evolutionary process, humans lost uricase, an enzyme that converts uric acid into allantoin, resulting in increased serum uric acid levels that may vary according to dietary ingestion, pathological conditions, and other factors. Despite the controversy over the inflammatory role of uric acid in its soluble form, crystals of uric acid are able to activate the NLRP3 inflammasome in different tissues. Uric acid, therefore, triggers hyperuricemic-related disease such as gout, metabolic syndrome, and kidney injuries. The present review provides an overview on the role of uric acid in the inflammasome-mediated kidney damage. RECENT FINDINGS: Hyperuricemia is present in 20-35% of patients with chronic kidney disease. However, whether this increased circulating uric acid is a risk factor or just a biomarker of renal and cardiovascular injuries has become a topic of intense discussion. Despite these conflicting views, several studies support the idea that hyperuricemia is indeed a cause of progression of kidney disease, with a putative role for soluble uric acid in activating renal NLRP3 inflammasome, in reprograming renal and immune cell metabolism and, therefore, in promoting kidney inflammation/injury. SUMMARY: Therapies aiming to decrease uric acid levels prevent renal NLRP3 inflammasome activation and exert renoprotective effects in experimental kidney diseases. However, further clinical studies are needed to investigate whether reduced circulating uric acid can also inhibit the inflammasome and be beneficial in human conditions.


Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Renal Insufficiency, Chronic/metabolism , Uric Acid/metabolism , Animals , Humans , Hyperuricemia/drug therapy , Hyperuricemia/metabolism
10.
Front Physiol ; 11: 84, 2020.
Article En | MEDLINE | ID: mdl-32116790

High glucose concentration can activate TLR4 and NF-κB, triggering the production of proinflammatory mediators. We investigated whether the NF-κB pathway is involved in the pathogenesis and progression of experimental diabetic kidney disease (DKD) in a model of long-term type 1 diabetes mellitus (DM). Adult male Munich-Wistar rats underwent DM by a single streptozotocin injection, and were kept moderately hyperglycemic by daily insulin injections. After 12 months, two subgroups - progressors and non-progressors - could be formed based on the degree of glomerulosclerosis. Only progressors exhibited renal TLR4, NF-κB and IL-6 activation. This scenario was already present in rats with short-term DM (2 months), at a time when no overt glomerulosclerosis can be detected. Chronic treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), prevented activation of renal TLR4, NF-κB or IL-6, without interfering with blood glucose. PDTC prevented the development of glomerular injury/inflammation and oxidative stress in DM rats. In addition, the NF-κB p65 component was detected in sclerotic glomeruli and inflamed interstitial areas in biopsy material from patients with type 1 DM. These observations indicate that the renal NF-κB pathway plays a key role in the development and progression of experimental DKD, and can become an important therapeutic target in the quest to prevent the progression of human DKD.

11.
J Am Soc Nephrol ; 31(4): 799-816, 2020 04.
Article En | MEDLINE | ID: mdl-32086278

BACKGROUND: Hereditary deficiency of adenine phosphoribosyltransferase causes 2,8-dihydroxyadenine (2,8-DHA) nephropathy, a rare condition characterized by formation of 2,8-DHA crystals within renal tubules. Clinical relevance of rodent models of 2,8-DHA crystal nephropathy induced by excessive adenine intake is unknown. METHODS: Using animal models and patient kidney biopsies, we assessed the pathogenic sequelae of 2,8-DHA crystal-induced kidney damage. We also used knockout mice to investigate the role of TNF receptors 1 and 2 (TNFR1 and TNFR2), CD44, or alpha2-HS glycoprotein (AHSG), all of which are involved in the pathogenesis of other types of crystal-induced nephropathies. RESULTS: Adenine-enriched diet in mice induced 2,8-DHA nephropathy, leading to progressive kidney disease, characterized by crystal deposits, tubular injury, inflammation, and fibrosis. Kidney injury depended on crystal size. The smallest crystals were endocytosed by tubular epithelial cells. Crystals of variable size were excreted in urine. Large crystals obstructed whole tubules. Medium-sized crystals induced a particular reparative process that we term extratubulation. In this process, tubular cells, in coordination with macrophages, overgrew and translocated crystals into the interstitium, restoring the tubular luminal patency; this was followed by degradation of interstitial crystals by granulomatous inflammation. Patients with adenine phosphoribosyltransferase deficiency showed similar histopathological findings regarding crystal morphology, crystal clearance, and renal injury. In mice, deletion of Tnfr1 significantly reduced tubular CD44 and annexin two expression, as well as inflammation, thereby ameliorating the disease course. In contrast, genetic deletion of Tnfr2, Cd44, or Ahsg had no effect on the manifestations of 2,8-DHA nephropathy. CONCLUSIONS: Rodent models of the cellular and molecular mechanisms of 2,8-DHA nephropathy and crystal clearance have clinical relevance and offer insight into potential future targets for therapeutic interventions.


Adenine Phosphoribosyltransferase/deficiency , Adenine/analogs & derivatives , Kidney Diseases/etiology , Kidney Diseases/pathology , Metabolism, Inborn Errors/etiology , Metabolism, Inborn Errors/pathology , Urolithiasis/etiology , Urolithiasis/pathology , Adenine/physiology , Adenine Phosphoribosyltransferase/metabolism , Adult , Animals , Cohort Studies , Diet , Disease Models, Animal , Female , Humans , Infant , Male , Metabolism, Inborn Errors/metabolism , Mice , Middle Aged , Urolithiasis/metabolism
12.
Front Immunol ; 11: 578623, 2020.
Article En | MEDLINE | ID: mdl-33414781

Increasing evidence shows the essential participation of gut microbiota in human health and diseases by shaping local and systemic immunity. Despite an accumulating body of studies showing that chronic kidney disease (CKD) is closely associated with disturbances in the composition of gut microbiota, it remains unclear the importance of gut microbiota in the onset and development of CKD. For the purpose of untangling the role of gut microbiota in CKD, gut microbiota was depleted with a pool of broad-spectrum antibiotics in mice submitted to unilateral ureteral obstruction (UUO). Depletion of gut microbiota significantly decreased levels of proinflammatory cytokines and fibrosis markers, attenuating renal injury. Additionally, to study whether the pathogenic role of gut microbiota is dependent of microbial-host crosstalk, we generated mice lacking Myd88 (myeloid differentiation primary response gene 8) expression in intestinal epithelial cells (IECs) and performed UUO. The absence of Myd88 in IECs prevented a bacterial burden in mesenteric lymph nodes as observed in WT mice after UUO and led to lower expression of proinflammatory cytokines and chemokines, reducing deposition of type I collagen and, ultimately, attenuating renal damage. Therefore, our results suggest that the presence of gut microbiota is crucial for the development of CKD and may be dependent of Myd88 signaling in IECs, which appears to be essential to maturation of immune cells intimately involved in aggravation of inflammatory scenarios.


Epithelial Cells/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Kidney/metabolism , Myeloid Differentiation Factor 88/metabolism , Renal Insufficiency, Chronic/etiology , Ureteral Obstruction/complications , Animals , Anti-Bacterial Agents/pharmacology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Dysbiosis , Fibrosis , Gastrointestinal Microbiome/drug effects , Inflammation Mediators/metabolism , Intestinal Mucosa/drug effects , Kidney/drug effects , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/microbiology , Renal Insufficiency, Chronic/pathology , Signal Transduction
13.
Front Pharmacol ; 10: 1192, 2019.
Article En | MEDLINE | ID: mdl-31649546

Inflammation, a process intimately linked to renal disease, can be defined as a complex network of interactions between renal parenchymal cells and resident immune cells, such as macrophages and dendritic cells, coupled with recruitment of circulating monocytes, lymphocytes, and neutrophils. Once stimulated, these cells activate specialized structures such as Toll-like receptor and Nod-like receptor (NLR). By detecting danger-associated molecules, these receptors can set in motion major innate immunity pathways such as nuclear factor ĸB (NF-ĸB) and NLRP3 inflammasome, causing metabolic reprogramming and phenotype changes of immune and parenchymal cells and triggering the secretion of a number of inflammatory mediators that can cause irreversible tissue damage and functional loss. Growing evidence suggests that this response can be deeply impacted by the crosstalk between the kidneys and other organs, such as the gut. Changes in the composition and/or metabolite production of the gut microbiota can influence inflammation, oxidative stress, and fibrosis, thus offering opportunities to positively manipulate the composition and/or functionality of gut microbiota and, consequentially, ameliorate deleterious consequences of renal diseases. In this review, we summarize the most recent evidence that renal inflammation can be ameliorated by interfering with the gut microbiota through the administration of probiotics, prebiotics, and postbiotics. In addition to these innovative approaches, we address the recent discovery of new targets for drugs long in use in clinical practice. Angiotensin II receptor antagonists, NF-ĸB inhibitors, thiazide diuretics, and antimetabolic drugs can reduce renal macrophage infiltration and slow down the progression of renal disease by mechanisms independent of those usually attributed to these compounds. Allopurinol, an inhibitor of uric acid production, has been shown to decrease renal inflammation by limiting activation of the NLRP3 inflammasome. So far, these protective effects have been shown in experimental studies only. Clinical studies will establish whether these novel strategies can be incorporated into the arsenal of treatments intended to prevent the progression of human disease.

14.
Am J Physiol Renal Physiol ; 317(4): F1058-F1067, 2019 10 01.
Article En | MEDLINE | ID: mdl-31411073

Nitric oxide inhibition with Nω-nitro-l-arginine methyl ester (l-NAME), along with salt overload, leads to hypertension, albuminuria, glomerulosclerosis, glomerular ischemia, and interstitial fibrosis, characterizing a chronic kidney disease (CKD) model. Previous findings of this laboratory and elsewhere have suggested that activation of at least two pathways of innate immunity, Toll-like receptor 4 (TLR4)/NF-κB and nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome/IL-1ß, occurs in several experimental models of CKD and that progression of renal injury can be slowed with inhibition of these pathways. In the present study, we investigated whether activation of innate immunity, through either the TLR4/NF-κB or NLRP3/IL-1ß pathway, is involved in the pathogenesis of renal injury in chronic nitric oxide inhibition with the salt-overload model. Adult male Munich-Wistar rats that received l-NAME in drinking water with salt overload (HS + N group) were treated with allopurinol (ALLO) as an NLRP3 inhibitor (HS + N + ALLO group) or pyrrolidine dithiocarbamate (PDTC) as an NF-κB inhibitor (HS + N + PDTC group). After 4 wk, HS + N rats developed hypertension, albuminuria, and renal injury along with renal inflammation, oxidative stress, and activation of both the NLRP3/IL-1ß and TLR4/NF-κB pathways. ALLO lowered renal uric acid and inhibited the NLRP3 pathway. These effects were associated with amelioration of hypertension, albuminuria, and interstitial inflammation/fibrosis but not glomerular injury. PDTC inhibited the renal NF-κB system and lowered the number of interstitial cells staining positively for NLRP3. PDTC also reduced renal xanthine oxidase activity and uric acid. Overall, PDTC promoted a more efficient anti-inflammatory and nephroprotective effect than ALLO. The NLRP3/IL-1ß and TLR4/NF-κB pathways act in parallel to promote renal injury/inflammation and must be simultaneously inhibited for best nephroprotection.


Immunity, Innate , Nitric Oxide/antagonists & inhibitors , Renal Insufficiency, Chronic/physiopathology , Sodium Chloride, Dietary/pharmacology , Allopurinol/pharmacology , Animals , Enzyme Inhibitors/pharmacology , Hypertension/drug therapy , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Male , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Pyrrolidines/pharmacology , Rats , Rats, Wistar , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/drug therapy , Signal Transduction/drug effects , Thiocarbamates/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism
15.
Am J Physiol Renal Physiol ; 317(5): F1285-F1292, 2019 11 01.
Article En | MEDLINE | ID: mdl-31461352

Hypoxia is thought to influence the pathogenesis of chronic kidney disease, but direct evidence that prolonged exposure to tissue hypoxia initiates or aggravates chronic kidney disease is lacking. We tested this hypothesis by chronically exposing normal rats and rats with 5/6 nephrectomy (Nx) to hypoxia. In addition, we investigated whether such effect of hypoxia would involve activation of innate immunity. Adult male Munich-Wistar rats underwent Nx (n = 54) or sham surgery (sham; n = 52). Twenty-six sham rats and 26 Nx rats remained in normoxia, whereas 26 sham rats and 28 Nx rats were kept in a normobaric hypoxia chamber (12% O2) for 8 wk. Hypoxia was confirmed by immunohistochemistry for pimonidazole. Hypoxia was confined to the medullary area in sham + normoxia rats and spread to the cortical area in sham + hypoxia rats, without changing the peritubular capillary density. Exposure to hypoxia promoted no renal injury or elevation of the content of IL-1ß or Toll-like receptor 4 in sham rats. In Nx, hypoxia also extended to the cortical area without ameliorating the peritubular capillary rarefaction but, unexpectedly, attenuated hypertension, inflammation, innate immunity activation, renal injury, and oxidative stress. The present study, in disagreement with current concepts, shows evidence that hypoxia exerts a renoprotective effect in the Nx model instead of acting as a factor of renal injury. The mechanisms for this unexpected beneficial effect are unclear and may involve NF-κB inhibition, amelioration of oxidative stress, and limitation of angiotensin II production by the renal tissue.


Hypoxia , Immunity, Innate , Kidney/pathology , Nephrectomy , Animals , Gene Expression Regulation/drug effects , Male , Nitroimidazoles/pharmacology , Organ Size , Oxygen/metabolism , Oxygen/pharmacology , Radiation-Sensitizing Agents/pharmacology , Rats , Renal Insufficiency, Chronic/pathology
16.
J Am Soc Nephrol ; 30(10): 1857-1869, 2019 10.
Article En | MEDLINE | ID: mdl-31296606

BACKGROUND: Serum oxalate levels suddenly increase with certain dietary exposures or ethylene glycol poisoning and are a well known cause of AKI. Established contributors to oxalate crystal-induced renal necroinflammation include the NACHT, LRR and PYD domains-containing protein-3 (NLRP3) inflammasome and mixed lineage kinase domain-like (MLKL) protein-dependent tubule necroptosis. These studies examined the role of a novel form of necrosis triggered by altered mitochondrial function. METHODS: To better understand the molecular pathophysiology of oxalate-induced AIK, we conducted in vitro studies in mouse and human kidney cells and in vivo studies in mice, including wild-type mice and knockout mice deficient in peptidylprolyl isomerase F (Ppif) or deficient in both Ppif and Mlkl. RESULTS: Crystals of calcium oxalate, monosodium urate, or calcium pyrophosphate dihydrate, as well as silica microparticles, triggered cell necrosis involving PPIF-dependent mitochondrial permeability transition. This process involves crystal phagocytosis, lysosomal cathepsin leakage, and increased release of reactive oxygen species. Mice with acute oxalosis displayed calcium oxalate crystals inside distal tubular epithelial cells associated with mitochondrial changes characteristic of mitochondrial permeability transition. Mice lacking Ppif or Mlkl or given an inhibitor of mitochondrial permeability transition displayed attenuated oxalate-induced AKI. Dual genetic deletion of Ppif and Mlkl or pharmaceutical inhibition of necroptosis was partially redundant, implying interlinked roles of these two pathways of regulated necrosis in acute oxalosis. Similarly, inhibition of mitochondrial permeability transition suppressed crystal-induced cell death in primary human tubular epithelial cells. PPIF and phosphorylated MLKL localized to injured tubules in diagnostic human kidney biopsies of oxalosis-related AKI. CONCLUSIONS: Mitochondrial permeability transition-related regulated necrosis and necroptosis both contribute to oxalate-induced AKI, identifying PPIF as a potential molecular target for renoprotective intervention.


Acute Kidney Injury/pathology , Mitochondrial Transmembrane Permeability-Driven Necrosis , Necroptosis , Acute Kidney Injury/chemically induced , Animals , Cells, Cultured , Humans , Male , Mice , Oxalates/administration & dosage
17.
Hypertens Res ; 42(6): 779-789, 2019 06.
Article En | MEDLINE | ID: mdl-30809002

We previously reported that rats treated with an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), during lactation developed hypertension in adult life, without apparent functional or structural damage to kidneys, providing a new model of essential hypertension. Here, we investigated whether uninephrectomy associated with salt overload would unveil a latent renal dysfunction in this model, aggravating arterial hypertension and promoting renal injury. Male Munich-Wistar rat pups received PDTC from maternal milk (PDTCLact) from 0 to 20 days after birth. Another group received no treatment during lactation. All offspring underwent uninephrectomy (UNx) at 10 weeks of age and then were subdivided into NS, receiving a normal salt (0.5% Na+) diet, PDTCLact + NS, HS, receiving a high-salt diet (2% Na+ chow + 0.5% saline to drink), and PDTCLact+HS. Twelve weeks later, HS rats were moderately hypertensive with mild albuminuria and renal injury. In contrast, severe hypertension, glomerulosclerosis, and cortical collagen deposition were prominent in PDTCLact + HS animals, along with "onion-skin" arteriolar lesions, evidence of oxidative stress and intense renal infiltration by macrophages, and lymphocytes and angiotensin II-positive cells, contrasting with low circulating renin. The NF-κB pathway was also activated. In a separate set of PDTCLact+HS rats, Losartan treatment prevented NF-κB activation and strongly attenuated glomerular injury, cortical fibrosis, and renal inflammation. NF-κB activity during late nephrogenesis is essential for the kidneys to properly maintain sodium homeostasis in adult life. Paradoxically, this same system contributed to renal injury resembling that caused by malignant hypertension when renal dysfunction caused by its inhibition during lactation was unmasked by uninephrectomy associated with HS.


Angiotensin II , Hypertension, Renal/pathology , NF-kappa B , Nephritis/pathology , Nephrosclerosis/pathology , Albuminuria/complications , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Arterioles/pathology , Female , Glomerulosclerosis, Focal Segmental/complications , Kidney Cortex/pathology , Kidney Glomerulus/pathology , Lactation , Losartan/therapeutic use , Male , NF-kappa B/antagonists & inhibitors , Nephrectomy , Pyrrolidines/pharmacology , Rats , Rats, Wistar , Thiocarbamates/pharmacology
18.
Am J Physiol Renal Physiol ; 316(2): F277-F291, 2019 02 01.
Article En | MEDLINE | ID: mdl-30403164

Renal ischemia-reperfusion injury (IRI) leads to acute kidney injury or delayed allograft function, which predisposes to fibrosis in the native kidney or kidney transplant. Here we investigated the role of the signal transducer and activator of transcription 1 (STAT1) in inflammatory responses following renal IRI. Our study showed that a subsequent stimulation of Janus-activated kinase 2/STAT1 and Toll-like receptor 4 pathways led to greater STAT1 activation followed by increased cytokine transcription compared with single-pathway stimulation in murine renal tubular cells. Moreover, we observed increased activation of STAT1 under hypoxic conditions. In vivo, STAT1-/- mice displayed less acute tubular necrosis and decreased macrophage infiltration 24 h after renal ischemia. However, investigation of the healing phase (30 days after IRI) revealed significantly more fibrosis in STAT1-/- than in wild-type kidneys. In addition, we demonstrated increased macrophage infiltration in STAT1-/- kidneys. Flow cytometry analysis revealed that STAT1 deficiency drives an alternatively activated macrophage phenotype, which is associated with downregulated cluster of differentiation 80 expression, decreased intracellular reactive oxygen species production, and enhanced ability for phagocytosis. Furthermore, we detected immunohistochemically enhanced STAT1 expression in human renal allograft biopsies with no interstitial fibrosis/tubular atrophy (IF/TA) compared with specimens with severe IF/TA without specific etiology. Thus, STAT1 activation drives macrophages toward an alternatively activated phenotype and enhances fibrogenesis indicating a potential STAT1-driven protective mechanism in tissue repair after ischemic injury.


Epithelial Cells/metabolism , Kidney Diseases/metabolism , Kidney Tubules/metabolism , Macrophage Activation , Macrophages/metabolism , Reperfusion Injury/metabolism , STAT1 Transcription Factor/metabolism , Adult , Aged , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/pathology , Female , Fibrosis , Humans , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Kidney Tubules/pathology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phenotype , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Signal Transduction
19.
Sci Rep ; 8(1): 12169, 2018 08 15.
Article En | MEDLINE | ID: mdl-30111809

Acute and chronic kidney injuries are multifactorial traits that involve various risk factors. Experimental animal models are crucial to unravel important aspects of injury and its pathophysiological mechanisms. Translating knowledge obtained from experimental approaches into clinically useful information is difficult; therefore, significant attention needs to be paid to experimental procedures that mimic human disease. Herein, we compared aristolochic acid I (AAI) acute and chronic kidney injury model with unilateral ischemic-reperfusion injury (uIRI), cisplatin (CP)- or folic acid (FA)-induced renal damage. The administration of AAI showed significant changes in serum creatinine and BUN upon CKD. The number of neutrophils and macrophages were highly increased as well as AAI-induced CKD characterized by loss of tubular epithelial cells and fibrosis. The in vitro and in vivo data indicated that macrophages play an important role in the pathogenesis of AA-induced nephropathy (AAN) associated with an excessive macrophage accumulation and an alternative activated macrophage phenotype. Taken together, we conclude that AA-induced injury represents a suitable and relatively easy model to induce acute and chronic kidney injury. Moreover, our data indicate that this model is appropriate and superior to study detailed questions associated with renal macrophage phenotypes.


Aristolochic Acids/metabolism , Kidney Diseases/metabolism , Macrophage Activation/physiology , Acute Kidney Injury/pathology , Animals , Aristolochic Acids/physiology , Cisplatin/pharmacology , Disease Models, Animal , Female , Fibrosis , Folic Acid/pharmacology , Kidney/pathology , Kidney Diseases/physiopathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/physiopathology
20.
Biosci Rep ; 38(4)2018 08 31.
Article En | MEDLINE | ID: mdl-29914975

Protein overload of proximal tubular cells (PTCs) can promote interstitial injury by unclear mechanisms that may involve activation of innate immunity. We investigated whether prolonged exposure of tubular cells to high protein concentrations stimulates innate immunity, triggering progressive interstitial inflammation and renal injury, and whether specific inhibition of innate or adaptive immunity would provide renoprotection in an established model of massive proteinuria, adriamycin nephropathy (ADR). Adult male Munich-Wistar rats received a single dose of ADR (5 mg/kg, iv), being followed for 2, 4, or 20 weeks. Massive albuminuria was associated with early activation of both the NF-κB and NLRP3 innate immunity pathways, whose intensity correlated strongly with the density of lymphocyte infiltration. In addition, ADR rats exhibited clear signs of renal oxidative stress. Twenty weeks after ADR administration, marked interstitial fibrosis, glomerulosclerosis, and renal functional loss were observed. Administration of mycophenolate mofetil (MMF), 10 mg/kg/day, prevented activation of both innate and adaptive immunity, as well as renal oxidative stress and renal fibrosis. Moreover, MMF treatment was associated with shifting of M from the M1 to the M2 phenotype. In cultivated NRK52-E cells, excess albumin increased the protein content of Toll-like receptor (TLR) 4 (TLR4), NLRP3, MCP-1, IL6, IL-1ß, Caspase-1, α-actin, and collagen-1. Silencing of TLR4 and/or NLRP3 mRNA abrogated this proinflammatory/profibrotic behavior. Simultaneous activation of innate and adaptive immunity may be key to the development of renal injury in heavy proteinuric disease. Inhibition of specific components of innate and/or adaptive immunity may be the basis for future strategies to prevent chronic kidney disease (CKD) in this setting.


Acute Kidney Injury/etiology , Acute Kidney Injury/immunology , Adaptive Immunity , Immunity, Innate , Kidney/immunology , Proteinuria/complications , Proteinuria/immunology , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Adaptive Immunity/drug effects , Animals , Disease Models, Animal , Enzyme Inhibitors/therapeutic use , Fibrosis , Immunity, Innate/drug effects , Kidney/drug effects , Kidney/pathology , Male , Mycophenolic Acid/therapeutic use , NF-kappa B/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Proteinuria/pathology , Rats, Wistar
...